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some years ago in a study of scattering from thin 
amorphous films (Gjonnes, 1959). For a crystal such a 
multiple scattering calculation would have to include 
Kikuchi-line effects. Efforts in this direction have re- 
cently been made by Heier (1973). The exclusion of the 
inelastic part of the background through a velocity 
filter might reduce this problem considerably. 

The question as to whether the comparison between 
observed and calculated distributions should be made 
in intensity space or in vector space is an old one in 
diffraction studies. With the quite complex structure 
studied in the present work, a least-squares method as 
employed has many advantages; it relates the intensity 
directly to a structure, and it does automatically take 
relations between different vectors in the projection 
into account. On the other hand, the use of the vector 
map may, to a certain extent, be seen as a more visual 
representation of the experimental results, and it does 
directly display some of the limitations inherent in the 
experiment, e.g. due to lack of observations close to 
the origin of the Brillouin zone. 

The present investigation produces strong diffraction 
evidence for the existence of tetrahedral detect clusters 
in disordered VOx.z3. This was expected, since the 
ordered state can be considered as an ordered arrange- 
ment of such tetrahedra, and also because recent meas- 
urement of the 200 structure factor (Andersson & 
Hoier, 1973) show that there must be nearly the same 
fraction of interstitial vanadium atoms above the 
ordering temperature. 

The local arrangement of clusters in the disordered 
structure cannot as yet be described very precisely. 
The comparison between observed and calculated in- 
tensity distributions shows that the local arrangement 
deviates from the ordered structure, VszO64. The partial 

Patterson projection synthesis as well as the least- 
squares calculation of order parameters shows that 

t_k ( I72)  is the nearest-neighbour intercluster vector. 
This is shorter than the nearest-neighbour vector (11½) 
in the superstructure. 
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A new twinning condition is derived. It is more general than Friedel's ratios [Yricdcl, (3. (1964). Lefons de 
Cristallographie, p. 249, Paris: Blanchard], and it allows one to predict not only the twin laws of a crys- 
talline species, but also the regular associations of crystals mutually oriented according to non-crystallo- 
graphic rotations. The deviation suffered by the twin lattice at the composition surface is better described 
in terms of the new twinning condition than in terms of the twin obliquity. 

Introduction 

Assemblages of two or more crystals, of the same or of 
different species, are called random aggregates if the 
mutual orientation of the constituent crystals is hap- 
hazard, and regular aggregates or oriented crystal 
growths if the crystals are related in well-defined ways 

dictated by their lattice dimensions. The crystals of a 
regular aggregate are mutually oriented so that they 
have a row, a net or a lattice exactly or approximately 
in common. The lattice control dictating these three 
types of mutual orientations is called monodimensional, 
didimensional and tridimensional respectively. Twins are 
regular aggregates consisting of individual crystals of 
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the same species. They are called monoperiodic, di- 
periodic or triperiodic if the lattice control is mono-, 
di-, or tridimensional respectively (Friedel, 1933a, b). 
In this paper, we restrict our analysis to triperiodic 
twins, which are the more common. 

Triperiodic twinning is usually characterized in terms 
of the geometrical rules developed by Bravais and Mal- 
lard and generalized by Friedel (Friedel, 1926; Cahn, 
1954; Donnay, 1959). These rules, whose validity is 
substantiated by a large number of observations, have 
been extensively used because they offer the only 
available method for predicting twin laws from lattice 
geometry alone and for interpreting the complex dif- 
fraction patterns produced by twins. 

The rules of the French school, however, are not al- 
ways easy to apply to practical problems and, more 
importantly, they are not general in some significant 
respects. Thus it seems desirable to develop more con- 
venient procedures for characterizing twinning. One 
such procedure has been derived as a particular case 
of the general treatment of crystal orientation in reg- 
ular aggregates with tridimensional lattice control and 
is presented in this paper together with some gener- 
alizations of Friedel's theory. The procedure permits 
one to predict the formation of twins from lattice di- 
mensions and to evaluate the mutual orientation of the 
individual crystals in a convenient mathematical way. 

The geometrical approach to the study of twinning 
is empirical and its validity rests on the observation 
that, in the cases studied, the orientation of the con- 
stituent crystals is controlled by lattice geometry. Its 
main limitation is that it provides only the necessary 
conditions for the formation of twins. Conditions 
which are also sufficient cannot be obtained without 
considering the crystal structure (Buerger, 1945; Hol- 
ser, 1958; Dornberger-Schiff, 1959, 1961). 

As the method derived in this paper is adaptable to 
automatic computations, it can be used systematically 
to check whether the known twins abide by the rules 
of the French school without exceptions and to clarify, 
where the structure is known, the relationship between 
the geometrical and the structural theories of twinning. 
A critical evaluation of published twin data is under 
way, and its results will form the subject of a sub- 
sequent paper. 

General 

Let us consider a regular aggregate of two crystals, not 
necessarily of the same species, and let their lattices 
A' and A" be described by the triplets of primitive 
non-coplanar translations a'~ and a'~' respectively, which 
define the reduced cells, or any other uniquely defined 
primitive cells (Niggli, 1928; Santoro & Mighell, 1970). 

Let us express the relationship between the lattices 
A' and A" by means of the transformation 

a', '= ~ B u a  j . (1) 

As we are interested in the mutual orientation of the 
two crystals, we assume that matrix B represents a 

linear transformation, i.e. a transformation that leaves 
the origin invariant. Let us define the scalar products 

A ; j = a ; . a } ,  A / j = a ' , ' . a } ' .  (2) 

From equation (1) we obtain 

A"= BA'B (3) 

where B is the transpose of matrix B. Equation (3) can 
be rewritten as 

~k~,B,kBj,A;k-A~j=O (i,j,k,l= 1,2,3). (4) 

The aggregate will be characterized by three-dimen- 
sional lattice control if a lattice F ' ,  which can be either 
A' itself or a superlattice* of A', and a lattice F " ,  
either A" or a superlattice of A", have equal or nearly 
equal lattice parametersl- and if the lattices F '  and F "  
are, exactly or approximately, superposed. Under these 
conditions, it is customary to say that the two crystals 
have a lattice F in common. Obviously F is defined 
only if the superposition of F '  and F "  is exact. If the 
superposition is approximate, F is taken coincident 
with F '  in A' and coincident with F "  in A". This geo- 
metrical situation is also described by saying that the 
common lattice does not extend exactly from one crys- 
tal to the other but suffers a deviation at their boundary. 

Let us call r~ and r'i' the translations describing F '  
and F "  respectively. We have 

r~= ~jQua} (5) 
and 

r ; '=  ~ jeua} ] .  (6) 

The matrices O and P can be unimodular or else gen- 
erate superlattices and, therefore, have integral ele- 
ments Qu and Pu and determinants IOI >-- 1 and I PI > 1 
(Santoro & Mighell, 1972). The relationship between 
r~ and r~' can be expressed by means of the transfor- 
mation 

r;'= ~iCur}. (7) 

From equations (1), (5), (6) and (7) we obtain 

B=P-~CQ. (8) 

If the superposition of F '  and F "  is exact, we must 
have 

r~'. rj' =r~. r j ,  (9) 

* The term superlattice used in this paper indicates a lattice 
obtained from the original lattice by means of a transformation 
matrix having integral elements and determinant larger than 
unity (Santoro & Mighell, 1972). In some publications 
(Bucksch, 1971, 1972; Cassels, 1959) the superlattice, as 
defined in this paper, is called, sublattice, because it is generated 
by a subgroup of the translations on which the original lattice 
is based. 

t An equally valid description of this type of regular aggre- 
gates is obtained by considering sublattices instead of super- 
lattices. Such descriptions have been used in the past, see, 
e.g., cryolite twinning (Wrinch, 1952; Donnay & Donnay, 
1952). 
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and, in addition, the translations r~', which define F" ,  
must be lattice vectors of F ' ,  and vice-versa. Con- 
sequently, matrix C has integral elements and the ele- 
ments B,j of matrix B of equation (8) are rational 
numbers. In this case equation (4) is exactly satisfied 
with rational coefficients Bij. 

If the superposition of F '  and F "  is not exact, the 
translations r;' will only approximately be lattice vec- 
tors of F', and the elements C~j will only approximate 
integral numbers. Consequently, equation (4) will be 
exactly satisfied with coefficients that are almost ra- 
tional or, which amounts to the same thing, approx- 
imately satisfied with rational elements Btj. 

By combining the two cases, we may say that two 
crystals of metric forms A' and A" having, exactly of 
approximately, a lattice in common, satisfy the equa- 
tion 

~k ~,B,kBj,A'~k- A;j~O , (I0) 

with rational coefficients B~j. On the other hand, if 
two crystals satisfy equation (10) with rational coef- 
ficients, they have a lattice in common. This proposi- 
tion can be proven in the following way. If the ele- 
ments Bii are rational we may write 

N~j=n~Bij , (11) 

where N~j and ni are integral numbers. From equation 
(1) we have* 

a'i ' =  ~j(N,j/ni)aj, (12) 
i.e. 

si=niai'= ~ jN , j a j  . (13) 

As the elements n~ of the diagonal matrix n and the 
elements N~j of matrix N are integral, the translations 
st define a superlattice common to A' and A". There 
are infinitely many such superlattices. In fact, if S is a 
matrix with integral elements and determinant ISI > 1, 
the matrices Sn and $N generate a new superlattice 
also common to A' and A". The smallest of the super- 
lattices common to A' and A" can be obtained as fol- 
lows. Let J be a unimodular matrix with integral ele- 
ments. An equivalent way of generating the superlattice 
defined by the translations si is provided by the trans- 
formations 

s ;=  x~j(J, inj)a)'= ~ j  ~_,k(J, jNjk)ak , (14) 
where 

sl = ZjJ, s . (i 5) 

If p~ is the common divisor of the coefficients (J~jnj) 
and (~.jJijNjk) also the vectors s'i'= s~/pi define a super- 
lattice common to A' and A". Ifp~ > I, this superlattice 
has a smaller multiplicity than the superlattice defined 
by the translations sl. The superlattice with the smallest 
multiplicity is obtained when there exists no common 
divisor larger than unity. 

* We suppose here that F" and F" are exactly superposed. 
The extension to the case of approximate superposition is 
obvious. 

The necessary and sufficient conditions for the ex- 
istence of a supercell common to two given lattices 
have been stated by Bucksch (1972) who has also de- 
scribed an algorithm for the calculation of the smallest 
supercell. A second method, applied to the study of 
coincidence-site lattices, has been given by Santoro & 
Mighell (1973). In the study of regular aggregates in 
general, and twinning in particular, the use of equa- 
tion (10) is more convenient than the previously pro- 
posed procedures. This equation, in fact, expresses in 
a compact way the geometrical conditions necessary 
for the formation of the aggregate, and it gives as 
solution the elements B~j required for defining the 
mutual orientation of two individuals in the aggregate.t 

The solutions of equation (10) correspond to all the 
possible mutual orientations of A' and A" for which a 
common lattice exists. In many cases more than one 
mutual orientation of the two crystals is consistent 
with the same superlattice. For example, if F possesses 
symmetry or pseudo-symmetry in addition to the cen- 
ter, equation (7) has more than one set of solutions 
with elements C/j integral or approximately integral 
and therefore the same common lattice results by 
orienting A' and A" in more than one way. This ob- 
servation forms the basis of the method used by Friedel 
(1926) for determining twin laws. 

The differences 

Aij= ~k ~lniknjtA;k - A;j 

are a measure of the misfit of the lattices F '  and F "  
in the aggregate or, in different words, of the deviation 
suffered by the common lattice as it crosses the bound- 
ary between the two crystals. The extent of the permis- 
sible deviation can only be established empirically, 
but it is reasonable to expect that the smaller the values 
of the individual A~j are, the more the formation of the 
aggregate is favored. 

Twinning conditions 

The individuals of a triperiodic twin are of the same 
crystalline species, i.e. 

A ' = A " = A ,  (17) 

and they are mutually oriented so that they have, ex- 
actly or approximately, a common lattice, called the 
twin lattice, which is either the crystal lattice or one of 
its superlattices (see Friedel, 1926; Donnay, 1959). The 
twinning condition, therefore, is a particular case of 
equation (10) and can be expressed in the following 
way: 'A crystal of metric form A may twin if the con- 
dition 

~.k ~.~B,kB~,A,k- A,j~O (18) 

t The rational elements B~j define the mutual orientation of 
A' and A" only if the superposition of F' and F" is exact. If 
the superposition is approximate, the elements Bi~ will specify 
this orientation only approximately. 
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is satisfied, for all the elements A~j, with rational co- 
efficient Bij , provided that these coefficients do not 
represent a symmetry operation of the crystal'.* 

Equation (18) is more general than the twinning con- 
ditions given by Friedel. According to Friedel (1926, 
pp. 454, 455), twinning is the result of the accidental 
presence in a lattice of a net and a row, sufficiently 
dense, that are exactly or approximately perpendicular. 
The twinning condition is therefore equivalent to the 
condition of perpendicularity of a net and a row. In 
the general case, a row [w~wzw3] is perpendicular to a 
net (h,haha) if (see Donnay & Donnay, 1959) 

ph - -Aw,  (19) 

where p is any number, rational or irrational, w is the 
column vector of the symbols w~, w2, w3 and h is the 
column vector of the indices hl, h2, h 3. As the elements 
of w and h are integral, Friedel concludes (p. 249) that 
equation (19) is satisfied if the ratios 

A l l  : A22:A33 :A12 : AI3 : A23 (20) 

are, or approach, rational numbers. 
It can be shown that conditions (18) and (20) are 

equivalent in all cases except in the monoclinic and 
triclinic systems. Let us consider, for example, a mono- 
clinic lattice of reduced form 

(A011 A22 A33 ) 
A13 0 / .  (21) 

If Ala=2An-Aa3,  equation (18) is satisfied by the 
matrices 

B1 1 2 -- 4. T T 2 -- 4 1 =(z0a/010/-x0x) and Bz = (-~0~-/010/~.0~) 

Twinning is clearly possible. This result is independent 
of the rationality of the ratios An : A22 :Aaa : A~a. Ac- 
tually the parameters of the monoclinic cell could be 
chosen so that these ratios are irrational (for example: 
Al l  = 1/2; A 2 2 = a n y ;  A33 = 1/2+2; A 1 3 =  1/2-2). 

From equation (19) it is clear that the rationality of 
the ratios (20) is a sufficent, but certainly not a neces- 
sary, condition for the perpendicularity of a row and 
a net. Equation (19), in fact, requires that the ratios 

~,,w,A,, : ~,,w,Az, : ~,,w,Aal , (22) 

and not ratios (20) must approach rational numbers. 
As irrational numbers are not closed under addition, 
subtraction, multiplication and division (Niven, 1961), 
it may well happen that conditions (22) are satisfied 
even if conditions (20) are not. For example, it can be 
shown that the monoclinic lattice of reduced form (21) 
is consistent with an orthorhombic superlattice that is 
obtained from the monoclinic reduced cell by means 

* This s ta tement  becomes necessary in twinning as we are 
dealing with one and  the same lattice in two or more  different 
orientat ions.  Symmet ry  operat ions  of  the crystal give trivial 
solutions of  equat ion  (18). 

of the transformation (010/T01/201). In fact, ratios 
(22), applied to our example become 

[(W~ -k- 2w3)A n --  waAaa]:[wzA22]:[2W1All -'}- (w3 - w1)A33] • 

These ratios show that the rows [10T] and [201] are per- 
pendicular to the nets (T02) and (101) respectively. 
Conditions (18) and (22) are equivalent. However, con- 
ditions (22) are only indirectly related to the geometrical 
situation involved in twinning, while equation (18) not 
only is more suitable for automatic computations, but 
also yields matrix B which describes the mutual orien- 
tation of the twinned crystals. 

Determination of twin laws 

A twin operation or 'twin law' specifies the mutual 
orientation of two twinned crystals. It is usually ex- 
pressed by the rotation necessary to bring one of the 
lattices into coincidence with the other. The informa- 
tion needed to compute a twin law is contained in 
matrix g. To determine if twinning is possible and, if 
so, the possible orientations of the twinned lattices, 
equation (18) must be solved for the unknown ele- 
ments B~j. By taking into consideration equation (1 I). 
equation (18) can be rewritten 

~k ~IN, kNj,A,k ~_n,njAij, (23) 

where N~j and n~ are integers. The solutions of equa- 
tion (23) can be found by systematically substituting 
for N~j, n~ and nj all the integral values lying between 
preselected upper and lower limits. The values of these 
limits depend on the multiplicity of the superlattices 
that may act as twin lattices.? From the elements Ni. l 
one calculates the elements Bii by means of equation 
(ll) .  Of the matrices B determined in this way, only 
those with determinant I BI = 1 that do not express a 
symmetry operation of the crystal need to be retained. 

The rotation relating the twinned lattices can be ob- 
tained from matrix B in the following way. Let us con- 
sider the transformations 

e ; = ~ j W ,  j a j ,  e ; ' = Z i W ,  ja'j' (24) 

f ; = Z j M ; ~ e j ,  f ; ' = Z j M / j e ' f  (25) 
and 

y; '- ~ L , j S  , y ; ' = ~ j L , j f j ' .  (26) 

In the above transformations, (i) e; and e~' define the 
conventional cells of A' and A" (the matrices W trans- 
forming reduced cells into conventional cells are given 
in International Tables for X-ray Crystallography, 
1969), (ii) f; and f;' are sets of translations symmetric- 
ally equivalent to el and el' respectively (i.e. matrices 
M' and M" represent symmetry operations of the crys- 
tal), (iii) Yl and y;' define Cartesian reference systems 
attached to the lattices A' and A" (for a convenient 

t The multiplicity of  a twin lattice is usually small. A choice 
of  all integral values between - 5  and 5 for the N~j's and  the 
nt's seems to be adequate  for most  cases. 

A C 30A - 7* 
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expression for matrix L see, e.g., Santoro, 1970). From 
the above equations and from equation (1) we obtain 

where 

and 

- I  ' y; '= ~,jRji  Yj, (27) 

R = (E.)- t(IVl")- t D(IVI') (L), (28) 

D = (~V)- I(B)- t(V~l). (29) 

The rotation necessary to bring y~ into coincidence 
with y~' is obtained from matrix R derived from B by 
means of equations (28) and (29).* The angle of this 
rotation is given by the expression 

cos c~= ( ~ , R u -  I)/2. (30) 
The ratios of the Cartesian direction cosines of the 
rotation axis are given by 

Zll:b12:b13=(Rz3--R32):(R31--Ra3):(Rt2--R2t) , (31) 

if ~ ¢  180 °. For c~= 180 °, the ratios (31) are not defined 
and the direction cosines u~ are obtained from the ex- 
pression 

ut : u2:u3 = (Rat + 1)1/2: (R2z + 1)t/E: (R33 + 1) u2. (32) 

The relative signs of the u~'s are given in this case by 
the equation 

(sign) u~uj= (sign) R u . (33) 

The direction cosines obtained from (31) or (32) are 
expressed in the reference system defined by the trans- 
lations y'~. Often it is more convenient to express them 
in one of the symmetrically equivalent systems defined 
by the conventional translations fl. This is done by 
means of the transformation 

where 
v=Tu,  (34) 

T=(IVI') (L). (35) 

In what follows, we indicate the rotation relating the 
lattices A' and A" with the symbols [UtUzUa]~ or [vtvzva]~, 
where ~ is the rotation angle and [utuzua] or [vtv2v3] 
specify the direction of the rotation axis in the systems 
y~ or f~. 

In twinning by merohedry and reticular merohedry, 
the mutual orientation of the twinned ciystals is pre- 
cisely defined. The elements B u give an exact solution 
of equation (18) and matrix R yields the exact twin 
law corresponding to the expression of B. 

In twinning by pseudo-merohedry and reticular 
pseudo-merohedry, however, any of the neighboring 
orientations of the twinned lattices having a lattice ap- 
proximately in common are possible twinning orienta- 
tions (the ambiguity in defining exactly the mutual 

* The matrices B obtained as solution of equation (18) are 
all the possible ones within the chosen limits of the elements N u 
and n, To avoid duplication of results, the expression for 
matrix R is therefore derived from equation (28) by putting 
M'= M"= I, where I is the identity matrix. 

orientation of the twinned crystals in this case is 
equivalent to the ambiguity in defining exactly the 
direction of an element of pseudo-symmetry: see, e.g., 
Donnay, 1959). The rational elements B u, in other 
words, give only an approximate solution of equation 
(18), i.e. the differences, 

Au=  ~ k  ~zB,kBj lA,k--  A u  , (36) 

are only approximately equal to zero. Therefore, one 
calculates from B approximate expressions for ma- 
trices D and R and from these matrices, which we in- 
dicate as D, and R,, one obtains a rotation [VaVzU3] a 
that only approximates the twin law [WtWzWa],.. This 
law can easily be recognized, however, because we 
know from experience that a twin operation is a crystallo- 
graphic rotation about a row line or reflection in a 
net plane (Law of Mallard). 

As an example of the computation of a twin law, 
let us consider the mineral djurleite (Takeda, Donnay, 
Roseboom & Appleman, 1967; Takeda, Donnay & 
Appleman, 1967). This mineral is orthorhombic P with 
lattice parameters that obey 

c~_2a , c~_b[/3 . (37) 

(In this paper, the a and c parameters given by Takeda 
et al. have been interchanged to conform to the con- 
vention a<b<_c used by Niggli (1928) in reduction 
theory.) Among the numerous matrices B that satisfy 
equation (18) let us consider 13 T (2-z0/l~ 0/001). As the 
lattice is primitive orthorhombic W = l a n d  (~_)-~ = 
(aOO/ObO/OOc). Therefore we have Da=(13(-l=(½10/ 

a 0/3b ] -~-20/00T); R, = ('L) - I D,,( L) = (½b 4a T0/00T!. From 

R, we obtain 

cos c~= - 1; (Rla+ 1)a/Z'(R22+ 1)uZ'(R33+ 1) u2 

= 1/3/1/2" 1/]/2"0. 
Therefore 

[V3/V'2\ [ l /3/al /2\  
V=([--.) [ 1/01/2)= [ 1/0bl/2), 

i.e. 
vl:v2"v3= V3/a" I/b:0__2:1:0 

and the twin law is [210h80o. 
As mentioned earlier, the matrices B used for find- 

ing twin laws must give IBI=I.  The corresponding 
matrices R, therefore, express proper rotations only. 
Clearly, if a set of elements B u satisfies condition (18), 
then the set - B  u too satisfies this equation. From the 
elements - B  u one obtains a matrix R, related to R 
by the equation 

R,= ( - I )R .  (38) 

The operation represented by matrix Ri is a combina- 
tion of the operation R and the inversion - I .  It fol- 
lows that for any twin operation [WlWzWa], there exists 
a twin operation [wawzw3]~ • i, where i indicates the in- 
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version of the lattice vectors. Remembering that a rota- 
tion through an angle c~= 180 ° followed by an inver- 
sion is equivalent to a reflection in the plane normal 
to the rotation axis, we have 

[w1w2w3]180 o . i -  (hlh'2ha)~- (hlh2h3) . 

The indices (h[hEh3) define a plane exactly perpendic- 
ular to [wlw2w3] and are such that the ratios h'~ :h'2:h; are 
not necessarily rational, while the indices [hlh2ha] de- 
fine a plane approximately perpendicular to [wlw2w3] 
and are such that the ratios hl:h2:h3 are rational. The 
plane (hlh2ha) is therefore a net and a reflection in it 
represents a possible twin operation. For example by 
adding an inversion to the twin rotation [2101180o pre- 
viously obtained for djurleite we have 

[2101180o. i -  (2a 2, b 2, 0) _~ (320). 

The problem of predicting twin laws with the pre- 
vious method becomes indeterminate unless restric- 
tions are imposed on the values of the integers N~j 
and n~. Also with these restrictions, the theory predicts 
more twin laws than are observed. The same situation 
is encountered if the twin laws are obtained according 
to Friedel's method, from the symmetry or pseudo- 
symmetry of the twin lattice. This is because, if A' and 
A" have a lattice in common, then they have infinitely 
many lattices in common. For example the monoclinic 
lattice of cryolite (Donnay, 1952) of parameters a~_b, 
a~_cl/2, f l~90 ° is consistent with a pseudo-cubic su- 
perlattice of multiplicity A--2 (transformation from 
monoclinic to pseudocubic: 110/110/001), and the 13 
twin laws of this mineral have been predicted on the 
basis of this superlattice. For A--3, however, cryolite 
is consistent with a pseudo-orthorhombic lattice (trans- 
formation from monoclinic to pseudo-orthorhombic" 
100/011/021) whose operations of pseudo-symmetry, 
referred to the conventional cell of cryolite, are the 
rotations [1001180o, [0111180o, [02111s0o, and the reflec- 
tions in (100), (012) and (0i1). The pseudo-symmetry 
elements [011], (012) and (0T1) do not belong to the 
pseudo-cubic symmetry and the axis [021] is twofold 
in the pseudo-orthorhombic superlattice and threefold 
in the pseudo-cubic superlattice. These additional ele- 
ments are characterized by a twin index 3 and a twin 
obliquity comparable to that of twins predicted from 
the pseudo-cubic cell and, theoretically, could well be 
twin elements. The fact that they have not been ob- 
served may be due to accident or, more likely, to struc- 
tural reasons not yet explained. 

Twin obliquity 

As previously stated, the differences A~j of equation 
(36) are a measure of the deviation suffered by the twin 
lattice in crossing the boundary from one individual 
to the other and they are therefore related to the twin 
obliquity (Friedel, 1926, p. 436). The differences A~, 
however, are more satisfactory than the obliquity in 
describing the deviation of the twin lattice. They also 

apply to cases in which the twin axis is other than two- 
fold. This can best be seen with an example. 

Chromium-doped VO2 (Marezio, Dernier & San- 
toro, 1973) is monoclinic, pseudo-orthorhombic (f l_ 
90 °) with a_~ 2c. One possible twin law is a 90 ° rotation 
about the unique b axis; the corresponding matrix 
is B=(002/010/½00). The obliquity in this case is not 
defined. The definition given by Friedel applies only 
to twofold axes; if one tries to extend it to the 
fourfold axis of the example, one obtains a value zero 
although the twin lattice suffers a rather severe devia- 
tion. On the other hand, from equation (36) we have 

,tit1 = a 2 _ 4c 2, Z J 3 3  = C 2 - -  a2/4, 

Ala--2ac cos fl, A 2 2 = z J 1 2 = A 2 3 = 0  . 

These results show that the deviation of the twin lat- 
tice takes place in the net ac and that it is due to the 
facts that 2c is only approximately equal to a and fl 
is only approximately equal to 90 ° . 

Equivalence of twin laws 

Let us consider the equations 

R=(L) - 'D(E)  and R'=(E)-~D'(E).  (39) 

The matrices R and R' are said to be 'equivalent' i f  

D' = (IVI")- i D(I~II'). (40) 

In the above expression, M" and M' are symmetry 
operations of the crystal. The R matrices related by 
equations (39) and (40) describe the same mutual orien- 
tation of two individuals in a twin and represent dif- 
ferent, but equivalent, ways of bringing the twinned 
lattices into coincidence.* 

Let us consider as an example a cubic primitive lat- 
tice. In this case B = D = R. From the matrix 

B [22111221212"t 

we obtain the rotation [3111146.4o. The rotation angle 
146-4 ° is not crystallographic. The operation 
[3111146.9 ° , however, is equivalent to the rotation 
[111160o which is obtained from the matrix 

D' = (001/0T0/100) D(100/001/0T0). 

In tht, se cases, according to the law of Mallard (Frie- 
del, 1926), the twin law is always specified by the crys- 
tallographic rotation about a row. If two or more ma- 
trices related by expressions (39) and (40) define crys- 
tallographic rotations about rows, the twin law they 
represent can be expressed indifferently by any one of 
them. For the cubic lattice of our example, matrix 

O"= (00 I/010/T00) O(001/T00/0T0) 

* This definition of equivalence of twin laws is based on the 
classical point-group theory of twinning. It may well happen 
that twin laws that are equivalent according to equations (39) 
and (40) become distinct if the space-group symmetry of the 
crystal structure is taken into account. See, e.g., Donnay, 
Sundarsanan & Young (1972L 
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gives [211118oo. By expressing the axes symbols in the 
same reference system, for example that in which [211] 
is expressed, we obtain 

[113]x46.9o =--[21 lha0°-[T11160- 

and the twin law can be expressed indifferently as 
[2111180o or []'11160o. 

There are other cases in which from condition (18) 
one obtains non-crystallographic rotations that are not 
equivalent to any of the possible twin laws of a given 
lattice. These cases are found when the crystal lattice 
is consistent with two or more twin lattices having 
symmetry or pseudo-symmetry operations whose com- 
binations result in non-crystallographic operations 
(i.e. the symmetry or pseudo-symmetry operations of 
the possible twin lattices, considered together, do not 
form a crystallographic group). For example the lat- 
tice of djurleite is consistent with two superlattices, 
one pseudo-tetragonal and the other pseudo-hexagonal, 
which can be obtained from the orthorhombic primi- 
tive cell by means of the transformations (010/200/001-) 
and (00T_/020/2]0), respectively [the transformation 
(001/200/110) from the pseudo-tetragonal cell to the 
pseudo-hexagonal cell, shows that the pseudo-hexag- 
onal lattice is a superlattice of the pseudo-tetragonal 
lattice]. Let us consider the matrix 

B =(O-k¼/O~/~O0), 

which satisfies the twinning condition (18) for djurleite. 
From it we obtain 

) R.= o-  b--c- 05Tb-c ~ o o  , 

which gives the rotation 

[ 3 b .  2a2 + c2" b ]  
2a ' 2ab ' 104.5 ° 

(41) 

The direction of the axis and the rotation angle 
found from R, have to be considered as approximate, 
because they have been derived by using a matrix B 
that satisfies condition (18) only approximately. The 
analysis of all possible matrices B for djurleite shows 
that this rotation is not equivalent to any of the possible 
twin laws. However, if we consider the combination 
of the twin laws [01019oo and [10016oo , we  have 

Flgoo = (OOT/OIO/IO0), 

1 - / 3  
R6o° = (100/0 ~ - ~ 3 - / 0  2 ~ ) ,  

and 

Rtot 

From Rtot we obtain 

/3. 
a 

1 1 - 1//3 0)  . 00o (00, 
J 

3 . - / 3 ]  

b ' c 104.5o 
(42) 

,~  O°, .~ . : _ b°  

/ /  

Fig. 1. Twinning in djurleite. Individuals I and II are related 
by the operation [001160o and individuals II and IV by the 
operation [01019oo. Individuals I and IV, therefore, are 

related by the operation [ l/3 3 I/3] 
a -b c ,04.~o 

As the parameters of djurleite are related by expres- 
sions (37), operations (41) and (42) are close to each 
other and close to [23T]104.5o (Fig. 1). If we are dealing 
with a genuine combination of twin operations, we 
have no reason to choose the rotation about the row, 
as the combination is correctly described only by the 
operation (42). 

In the classical theory of twinning, thanks to the 
law of Mallard, a twin element can always be restricted 
to a lattice element (net plane or row line). Operations 
like the one found for djurleite have always been de- 
scribed as combinations of twin operations. Such de- 
scriptions have been characterized as mathematical 
formulations without structural significance (Hart- 
man, 1956; Holser, 1958), but the fact remains that 
associations of crystals mutually oriented according to 
non-crystallographic rotations do occur (Drugman, 
1939, 1943). Because of its generality, condition (18) 
allows the prediction and the characterization of such 
associations in each case. 

The author wishes to thank Professor J. D. H. Don- 
nay for many helpful discussions and for reading the 
manuscript. 

References 
BUCKSCH, R. (1971). J. Appl. Cryst. 4, 156-159. 
BUCI<SCH, R. (1972). J. Appl. Cryst. 5, 96-102. 
BUERGER, M. J. (1945). Amer. Min. 30, 469-482. 
CAHN, R. W. (1954). Advanc. Phys. 3, 363-445. 
CASSELS, J. W. S. (1959). An Introduction to the Geometry of 

Numbers, New York: Springer Verlag. 
DONNA',', J. D. H. (1952). Amer. Min. 37, 230-234. 
DONNAY, J. D. H. (1959). Encyclopedia Britannica. London: 

Benton. 
DONNAY, J. D. H. & DONNAV, G. (1952). Amer. Min. 37, 

242-243. 
DONNAY, J. D. H. & DONNAY, G. (1959). International 

Tables for X-ray Crystallography, Vol. If. Birmingham: 
Kynoch Press. 



A. S A N T O R O  231 

DONNAY, J. D. H., SUDARSANAN, K. & YOUNG, R. A. (1973). 
Acta Cryst. B29, 814-817. 

DORNBERGER-SCHIFF, K. (1959). Acta Cryst. 12, 246. 
DORNBERGER-SCHIFF, K. (1961). Acta Cryst. 14, 1003. 
DRUGMAN, J. (1939). Bull. Soc. Fr. MinOr. 62, 99-132. 
DRUGMAN, J. (1943). Bull. Soc. Fr. MinOr. 66, 264-283. 
FRIEDEL, G. (1926). Lefons de Cristallographie. Paris: 

Berger-Levrault. Reprinted (1964). Paris: Blanchard. 
FRIEDEL, G. (1933a). C.R. Acad. Sci. Paris, 197, 103- 

105. 
FRIEDEL, G. (1933b). Bull. Soc. Fr. MinOr. 56, 262-274. 
HARTMAN, P. (1956). Z. Kristallogr. 107, 225-237. 
HOLSER, W. T. (1958). Z. Kristallogr. 110, 249-265. 
International Tables for X-ray Crystallography. (1969). Vol. 

I. p. 530. Birmingham: Kynoch Press. 
MAREZIO, M., DERNIER, P. D. • SANTORO, A. (1973). Acta 

Cryst. A 29, 618-621. 

NIGGLI. P, (1928). Handbuch der Experimentalphysik, Vol. 
7, Part 1. Leipzig: Akademische Verlagsgesellschaft. 

NIVEN, I. (1961). Numbers: Rational and Irrational. Random 
House. 

SANTORO, A. (1970). Crystallographic Computing. Edited by 
F. R. AHMED. Copenhagen: Munksgaard. 

SANTORO, A. & MIGHELL, A. D. (1970). Acta Cryst. A26, 
124-127. 

SAN'rORO, A. & MmI-IELL, A. D. (1972). Acta Cryst. A28, 
284-287. 

SANTORO, A. & MIGHELL, A. D. (1973). Acta Cryst. A29, 
169-175. 

TAKEDA, H., DONNAY, J. D. H., ROSEBOOM, E. H. & APPLE- 
MAN, D. E. (1967). Z. Kristallogr. 125, 404-413. 

TAKEDA, H., DONNAY, J. D. H. & APPLEMAN, D. E. (1967). 
Z. Kristallogr. 125, 414-422. 

WRINCH, D. (1952). Amer. Min. 37, 234-241. 

Acta Cryst. (1974). A30, 231 

Debye Temperature of NaF and RbBr by X-ray Diffraction 
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Debye temperatures of NaF and RbBr have been determined by X-ray diffraction from room temperature 
up to about 800°K using methods due to Paskin [Acta Cryst. (1957). 10, 667-669] and Chipman [J. Appl. 
Phys. (1960). 31, 2012-2015]. The anharmonic contribution to the Debye O is shown to come essentially 
from thermal expansion. The plot of the reduced thermal expansion a/a,,/z versus T/AaaO 2 gives a com- 
mon curve. Here am/~ is the value of a at T= ½T,,, T,, being the melting point, A is the mean atomic 
weight and a the lattice constant. The energy of vacancy formation is computed using an equation 
established by Pathak & Trivedi [Proe. Nucl. Phys. Solid State Phys. Symp. Roorkee, India, (1969). pp. 
50-531. 

Introduction R - 

On searching the literature it is found that no system- 
atic investigation of the temperature variation of the 
Debye temperature OM of NaF and RbBr has been 
undertaken. Still however, room-temperature values of 
OM for NaF have been determined by several workers - 
notably by Brindley (1930), Shonka (1933), Wasastjerna 
(1946) and Meisalo & Merisalo (1966). Their values are 
respectively 398, 442, 440 and 400°K. 

Experimental  

The experimental procedure is fully described by 
Pathak & Vasavada (1970; hereafter called Paper I). 
The profiles of lines 420 and 422 were recorded on a 
chart recorder and planimetered. The background was 
determined by a method described by Mitra & Misra 
(1966). 

The basic equation from which the X-ray Debye 
temperature OM is calculated, (Pathak & Trivedi, 
1973; hereafter called Paper II), is 

mK 2 z [ I  B ']  
12h z ( l - t )  sin 2 0 ln~-0 -In--B-~£ 

TWo Tgt sin z 0 
020 O~t sin z 00 ' 

(1) 

where I and I0 are the measured integrated intensities 
at temperatures T and To, and 0 is the Bragg angle. 

~, and B'  are respectively given by 

l l~ udu x 

~'= x e"--z-f + - £  

1 + cos z 20 
B ' =  Np f  z sinZ 0 cos 0 

where x=OM/T,  N is the number of unit cells 
irradiated, p is the multiplicity factor and f i s  the atomic 
scattering factor. 

The quantity ( l - t )  takes into account the one- 
phonon thermal diffuse scattering (TDS) contribution 
to the measured intensity according to Chipman & 


